Markov Logic in Natural Language Processing: Theory, Algorithms, and Applications
نویسنده
چکیده
Natural languages are characterized by rich relational structures and tight integration with world knowledge. As the field of NLP/CL moves towards more complex and challenging tasks, there has been increasing interest in applying joint inference to leverage such relations and prior knowledge. Recent work in statistical relational learning (a.k.a. structured prediction) has shown that joint inference can not only substantially improve predictive accuracy, but also enable effective learning with little or no labeled information. Markov logic is the unifying framework for statistical relational learning, and has spawned a series of successful NLP applications, ranging from information extraction to unsupervised semantic parsing. In this tutorial, I will introduce Markov logic to the NLP community and survey existing NLP applications. The target audience of the tutorial is all NLP researchers, students and practitioners. The audience will gain the ability to efficiently develop state-of-the-art solutions to NLP problems using Markov logic and the Alchemy open-source software.
منابع مشابه
Markov Logic Networks: Theory, Algorithms and Applications
Most real world problems are characterized by relational structure i.e. entities and relationships between them. Further, they are inherently uncertain in nature. Theory of logic gives the framework to represent relations. Statistics provides the tools to handle uncertainty. Combining the power of two becomes important for accurate modeling of many real world domains. Last decade has seen the e...
متن کاملHa, Eun Young. Modeling Discourse Structure and Temporal Event Relations for Automated Document Summarization with Markov Logic Networks. (under the Direction of Modeling Discourse Structure and Temporal Event Relations for Automated Document Summarization with Markov Logic Networks
HA, EUN YOUNG. Modeling Discourse Structure and Temporal Event Relations for Automated Document Summarization with Markov Logic Networks. (Under the direction of James C. Lester.) Recent years have seen significant progress in natural language processing. A key challenge posed by many natural language applications ranging from text summarization to question answering and machine translation is ...
متن کاملStatistical Markovian Data Modeling for Natural Language Processing
Markov chain theory is a popular statistical tool in applied probability that is quite useful in modelling real-world computing applications. Over the past years; there has been grown interest to employ Markov chain theory in statistical learning of temporal (i.e. time series) data. A wide range of applications found to utilize Markov concepts; such applications include computational linguists,...
متن کاملSprachtheoretische Grundlagen F Ur Die Computer Linguistik Probabilistic Constraint Logic Programming
This paper addresses two central problems for probabilistic processing models: parameter estimation from incomplete data and eecient retrieval of most probable analyses. These questions have been answered satisfactorily only for probabilistic regular and context-free models. We address these problems for a more expressive probabilistic constraint logic programming model. We present a log-linear...
متن کاملKnowledge-leveraged Computational Thinking through Natural Language Processing and Statistical Logic (NII Shonan Meeting 2011-4)
This talk describes a recent effort on the development of a textual entailment data set. Rather than assuming a sub-component of applications like question answering and multi-document summarization, we focus on a realworld task to judge whether a natural language proposition is true or false according to a given text. I will describe the design of resource development and features of the obtai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010